[gTME for construction of recombinant yeast co-fermenting xylose and glucose].
نویسندگان
چکیده
Global transcription machinery engineering (gTME) was employed to engineer xylose metabolism. Mutation of the transcription factor gene Sptl5 was introduced by error-prone PCR, followed by screening on media using xylose as the sole carbon source. One recombinant strain growing well on such media was chosen for further research. This strain showed modest growth rates in the media containing 50 g/L xylose or glucose at the condition of 30 degrees C, 200 r/min, 96 h, 94.0% and 98.9% of xylose and glucose were consumed, with the ethanol yield were 32.4% and 31.6%, respectively. The control strain had the ethanol yield of 44.3% under the glucose concentration of 50 g/L. When the carbon source was 50 g/L glucose/xylose (1:1), the utilization ratio of xylose and glucose was 91.7% and 85.9%, with the ethanol yield was 26%. Xylose was eventually exhausted. Concentration of the by-product xylitol was very low.
منابع مشابه
Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose.
Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2 microns-based high-copy-num...
متن کاملDNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast
Lignocellulosic biomass, which contains large amounts of glucose and xylose, is the new ideal feedstock for ethanol production used as renewable liquid fuel for transportation. The naturally occurring Saccharomyces yeasts traditionally used for industrial ethanol production are unable to ferment xylose. We have successfully developed genetically engineered Saccharomyces yeasts that can effectiv...
متن کاملConstruction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution
BACKGROUND It remains a challenge for recombinant S. cerevisiae to convert xylose in lignocellulosic biomass hydrolysates to ethanol. Although industrial diploid strains are more robust compared to laboratory haploid strains, however, industrial diploid S. cerevisiae strains have been less pursued in previous studies. This work aims to construct fast xylose-fermenting yeast using an industrial ...
متن کاملEngineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae
BACKGROUND Engineering of Saccharomyces cerevisiae for the simultaneous utilization of hexose and pentose sugars is vital for cost-efficient cellulosic bioethanol production. This yeast lacks specific pentose transporters and depends on endogenous hexose transporters for low affinity pentose uptake. Consequently, engineered xylose-fermenting yeast strains first utilize D-glucose before D-xylose...
متن کاملImproved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules
BACKGROUND Two major hurdles for successful production of second-generation bioethanol are the presence of inhibitory compounds in lignocellulosic media, and the fact that Saccharomyces cerevisiae cannot naturally utilise pentoses. There are recombinant yeast strains that address both of these issues, but co-utilisation of glucose and xylose is still an issue that needs to be resolved. A non-re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sheng wu gong cheng xue bao = Chinese journal of biotechnology
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2008